Головне меню
Головна Підручники Правова статистика ПРАВОВА СТАТИСТИКА § 2. Види середніх величин та техніка їх обчислення

§ 2. Види середніх величин та техніка їх обчислення

Правова статистика - ПРАВОВА СТАТИСТИКА
123

§ 2. Види середніх величин та техніка їх обчислення

У практиці проведення статистичних досліджень застосовуються різні види середніх величин. Це обумовлено перш за все наявністю вихідних да­них і метою дослідження. За технікою обчислення усі середні величини можуть бути прості (незважені) та зважені, за класом всі вони відносяться до степенної середньої. Загальна формула середньої степенної має такий вигляд (перша формула – проста; друга – зважена):

,

де – степенна середня величина; x – варіанти (значення ознаки одиниць сукупності); n – загальна кількість одиниць сукупності; f – вага, частота, яка показує скільки разів зустрічається те чи інше значення ознаки; m – показник ступеню середньої; ? – знак суми.

За назвами в статистиці використовуються середня арифметична, се­редня хронологічна, середня геометрична, середня квадратична величини, се­редня гармонічна. Зміна значення показника степенної середньої величини (m) визначає вид середньої величини: якщо m = 1, то ми одержуємо середню арифметичну величину; якщо m = 2, то одержуємо середню квадратичну; як­що m = 3, то – середню кубічну; якщо m = - 1,– маємо середню гармонічну; якщо m = 0, то середню геометричну. З степенних середніх в правовій стати­стиці найчастіше використовують середню арифметичну, значно рідше – се­редню гармонічну; середня геометрична застосовується лише при обчисленні середніх темпів динаміки, а середня квадратична – при обчисленні показни­ків варіації.

Розмір обчисленої середньої величини завжди відрізняється, оскільки обумовлюється показником степеню середньої величини. В загальному ви­гляді це правило має назву мажорантності середніх: чим більше показник ступеня, тим більше величина середньої. При цьому слід мати на увазі, що правильну характеристику різних сукупностей в кожному о

кремому випадку визначає лише певний вид середньої величини. Основний критерій визначен­ня виду середньої величини – це механізм утворення обсягу ознаки, яка варіює. Середня тільки тоді буде вірно відображати усю сукупність, коли при заміні усіх ознак (варіантів) середньою загальний обсяг варіюючої ознаки залишиться незмінним.

Залежно від того, як формується загальний обсяг сукупності, і визна­чається вид середньої величини. Середня арифметична застосовується тоді, коли обсяг варіючої ознаки утворюється як сума окремих варіантів, середня квадратична – коли обсяг варіючої ознаки має вигляд суми квадратів окре­мих варіантів, середня гармонічна – коли обсяг варіючої ознаки складається із суми обернених значень окремих варіантів, середня геометрична – коли обсяг варіючої ознаки одержується як добуток окремих варіантів.

У правовій статистиці середні арифметичні величини застосовуються тоді, коли первинні (вихідні) дані наведені у такому вигляді, що загальний обсяг ознаки для усієї сукупності можна одержати шляхом підсумовування їх у всіх одиницях.

Середня арифметична проста (незважена) обчислюється шляхом ді­лення суми індивідуальних значень ознаки на їх загальну кількість. Спочатку підсумовують значення усіх варіантів, а потім ця сума ділиться на загальну кількість одиниць сукупності. Наприклад, один слідчий районної прокурату­ри закінчив за місяць 2 справи, інший – три. В результаті у середньому вони закінчили розгляд 2,5 справи ((2+3) : 2). При цьому не можна відкинути 0,5 справи і округлити цифру, тому що в такому разі результат буде помилковий.

Середня арифметична проста використовується дуже рідко, як правило, лише тоді, коли сукупність повністю симетрична (нормальний закон розпо­ділу одиниць) або має невелику кількість одиниць (як в нашому прикладі).

У загальному вигляді середня арифметична проста обчислюється за формулою:  

де: – середня арифметична величина; x – значення ознаки одиниць сукупності; n – кількість варіантів, з яких обчислюється середня (обсяг статистичної сукупності); ? – знак суми.

У правовій статистиці застосовуються середня арифметична зваже­на, яка обчислюється за формулою:

де ?1, ?2 , … , ?n – повторення (частота, вага) кожного варіанта; x1, x2, …, xn – значення ознаки одиниць сукупності; ? – знак суми.

Середня арифметична зважена завжди обчислюється тоді, коли окремі значення варіантів у сукупності повторюються кілька разів або коли ряд роз­поділу значення ознаки несиметричний. При обчисленні середньої арифме­тичної зваженої за наведеною формулою значення кожного варіанта (ознаки кожної одиниці сукупності) слід помножити на відповідну йому вагу (часто­ту або повторюваність кожного варіанта) і суму цих добутків поділити на су­му частот (загальну кількість одиниць сукупності). При цьому перемножен­ня значень ознак сукупності на кількість їх повторювання в сукупності (тобто варіантів на ваги) називається зважуванням, а одержана середня величина – зваженою.

Використання середньої арифметичної зваженої дає змогу замінити багаторазове підсумовування однакових варіантів, як це має місце при обчисленні середньої арифметичної простої.

Отже, за наявності значної кількості первинних даних можна обчислю­вати середню величину двома способами: 1) шляхом підсумовування значень ознаки у кожної окремої одиниці сукупності – за формулою арифметичної простої; 2) на підставі заздалегідь впорядкованих даних у вигляді варіацій­ного ряду розподілу – за формулою арифметичної зваженої. При цьому спо­чатку обов`язково будується варіаційний ряд розподілу, для того щоб бути впевненими, що обчислюється середня для якісно однорідної сукупності.

Обчислимо середню арифметичну зважену за даними табл. 9 (первинні дані наведені у вигляді дискретного ряду розподілу).

Таблиця 9.

Кількість розглянутих кримінальних справ в місцевому суді.

За допомогою наведеної вище формули одержимо середню кількість засуджених по кримінальній справі: 2, 4 людини (144 : 60).

Середня величина завжди має числове вираження в тих самих одиницях виміру, що й первинні дані. При цьому її розмір обов`язково знаходиться в межах від мінімального до максимального значення ознаки і вона не може бути меншою за мінімальне і більшою за максимальне значення ознаки. Як­що ж з якоїсь причини одержали середню величину, яка істотно відрізняється від варіантів, то слід обчислити її заново.

Округлювати одержані дані можна лише таким чином, щоб не втратити реального змісту показника. Якщо в даному прикладі ми відкинемо десяту частину дробу, то істотно зменшимо результат. Якщо 2 особи помножити на 60 кримінальних справ, одержимо 120 осіб, а в дійсності за цими розгляну­тими кримінальними справами було засуджено 144 особи, тобто маємо змен­шення на 24 особи.

Частіше доводиться обчислювати середні арифметичні зважені з даних, наведених в статистичній звітності у вигляді інтервальних варіаційних рядів розподілу, коли значення варіантів наведено не числом, а в межах інтервалу: від… до … Наприклад, маємо такі дані про вік засуджених ( табл. 10).

Таблиця 10.

Кількість засуджених за віком за злочини проти власності

Щоб обчислити середній вік усіх 130 осіб, засуджених за злочини проти власності, спочатку необхідно визначити середній вік кожної групи, тому що вік в документах первинного обліку (статистична картка на підсудного) наво­диться у вигляді інтервалів. Середній вік для кожної групи умовно прийма­ють, як середину кожного інтервалу. Вона обчислюється як середня арифме­тична проста умовно, оскільки не завжди однаково зустрічаються в межах групи особи з різним віком. Нижня межа інтервалу першої групи визнача­ється згідно з кримінальним кодексом. Відповідальність за вчинення цих видів злочинів настає з 14 років, таким чином середина першої вікової групи буде дорівнювати 15,5 рокам ((14 + 17) : 2). Аналогічно обчислюється сере­дина усіх інших інтервалів, крім останнього, оскільки в ньому відсутня верх­ня межа інтервалу. Останній інтервал повністю відкритий. Теоретично особа у будь-якому віці, якщо вона вчинила злочин, може буде засуджена. В такому разі ця межа встановлюється умовно таким чином, щоб інтервал був рівним сусідньому з ним. В нашому прикладі величина передостаннього інтервалу дорівнювала 19 рокам (49 – 30). Відповідно, приймаємо верхню межу остан­нього інтервалу рівною 69 років (50 + 19), тоді середина становить 59,5 років ((69 + 50) : 2).

Після встановлення середини кожного інтервалу, за наведеною вище формулою середньої арифметичної зваженої обчислюємо середній вік 130 засуджених за злочини проти власності. Він складає 26,3 роки (3416 : 130).

При цьому слід мати на увазі, що середня величина, обчислена за дани­ми інтервального варіаційного ряду розподілу, завжди є наближеною, тому що при її обчисленні робиться припущення про однакові розміри ознаки у кожної одиниці сукупності. Але точних даних одержати неможливо, оскільки в звітності вони наведені у такому вигляді. Звісно, що чим більше величина інтервалу і чим більше одиниць в ньому, тим більше відхилень від дійсної се­редньої величини можна одержати. Істотно вплинути на розмір середньої ве­личини, обчисленої з інтервального ряду, може й довільне встановлення межі відкритих інтервалів, тому що із підрахунку можуть повністю зникнути най­більш віддаленні значення ознаки.

Середня арифметична, яка обчислюється за даними варіаційного ряду, має ряд властивостей, які мають практичне значення при її обчисленні. Найголовніші властивості такі:

Добуток середньої на суму частот завжди дорівнює сумі добутку варіантів на частоти.

Якщо від кожного значення варіанта відняти якесь число, то середня арифметична величина зменшиться на теж саме число.

Якщо до кожного значення варіанта додати якесь число, то середня арифметична величина збільшиться на теж саме число.

Якщо кожне значення варіанта поділити на якесь число, то се­редня арифметична величина зменшиться на теж саме число разів. Ця вла­стивість дає змогу значно простіше обчислити середню арифметичну величину.

Якщо кожне значення варіанта помножити на якесь число, то середня арифметична величина збільшиться на теж саме число разів.

Якщо усі частоти (ваги) поділити (або помножити) на якесь чис­ло, то середня арифметична величина від цього не зміниться. Цією власти­вістю часто користуються, коли частоти (ваги) мають вигляд у відсотках до підсумку.

Дуже рідко в правовій статистиці застосовуються середня гармонічна – обернена величина середньої арифметичної із обернених значень варіантів. Застосування середньої арифметичної або гармонічної залежить від первинних даних. Якщо за ваги (частоти) береться не кількість одиниць сукупності, а величини, одержані внаслідок множення значень варіантів на кількість одиниць, тобто зразу маємо добуток х?, то в цьому разі обчислюється середня гармонічна. У правовій статистиці, як правило, такі дані не зустрічаються або зустрічаються дуже рідко. В інших галузях статистики ця величина застосовується для обчислення середньої врожайності, середньої продуктивності праці, середнього відсотка виконання плану тощо. До цього часу статистики так і не визначилися, за якою середньою слід обчислювати середній термін будівництва. За правилами математичної статистики (мажорантності середніх величин) середня арифметична завжди більша за середню гармонічну, особливо якщо йдеться про значний розмір показника.

Для розрахунку середньої величини за формулою середньої гармонічної зваженою необхідно виходити з логічного усвідомлення вихідних величин. Наприклад, кількість оштрафованих осіб – це складова частина загальної су­ми штрафу. Тому щоб встановити середній розмір штрафу (розрахункова величина) ми повинні його обраховувати за формулою середньої гармонічної зваженої.

Але може обчислюватися і середня гармонічна проста за формулою:

Дана формула використовується лише тоді, коли вага кожного варіанта дорівнює одиниці. На практиці таке практично не зустрічається.

Середня гармонічна зважена обчислюється за формулою:

де: Х  значення ознаки, що варіює; М=Xf  результат перемноження значення варіантів на їх ваги.

Якщо ми дійсно будемо розраховувати середній розмір стягнутих штрафів тим чи іншим органом або в тій чи іншій місцевості, то знаменник дробу буде мати реальний зміст – кількість оштрафованих осіб, які сплатили штраф.

Техніка обчислення середньої геометричної і середньої хронологічної, які в правовій статистиці застосовуються при обчисленні показників в рядах динаміки, наведена розділі Х цього підручника.

 

< Попередня   Наступна >